ML-EM ALGORITHM WITH KNOWN CONTINUOUS MOVEMENT MODEL

CAMILLE POUCHOL AND OLIVIER VERDIER

ABSTRACT. In Positron Emission Tomography, movement leads to blurry reconstructions when not accounted for. Whether known a priori or estimated jointly to reconstruction, motion models are increasingly defined in continuum rather than in discrete, for example by means of diffeomorphisms. The present work provides both a statistical and functional analytic framework suitable for handling such models. It is based on time-space Poisson point processes as well as regarding images as measures, and allows to compute the maximum likelihood problem for line-of-response data with a known movement model. Solving the resulting optimisation problem, we derive an Maximum Likelihood Expectation Maximisation (ML-EM) type algorithm which recovers the classical ML-EM algorithm as a particular case for a static phantom. The algorithm is proved to be monotone and convergent in the low-noise regime. Simulations confirm that it correctly removes the blur that would have occurred if movement were neglected.

1. INTRODUCTION

In Positron Emission Tomography (PET), line-of-response data consists of the times of simultaneous detections of two photons, in each of the \(m \) pairs of detectors, from which one aims at reconstructing the underlying image \(\mu \in X \), for some suitable space of images \(X \). When the phantom is static, the times are grouped into numbers of detections \(y_i \) per detector \(i \in \{1, \ldots, m\} \). A good statistical model for the problem is then \(y = \mathcal{P}(A\mu) \), i.e., the data is obtained as \(m \) independent Poisson random variables \(y_i \) of mean \((A\mu)_i \) where \(A : X \to \mathbb{R}^m \) is a known operator modelling the scanner geometry.

This inverse problem is in practice solved through variants of the iterative Maximum Likelihood Expectation Maximisation (ML-EM) algorithm

\[
\mu_{k+1} = \frac{\mu_k}{A^T \mathbb{1}} A^T \left(\frac{y}{A\mu_k} \right),
\]

which maximises the likelihood associated to the above statistical model, i.e., it minimises \(\ell(\mu) := d(y|A\mu) \) over \(\mu \in X, \mu \geq 0 \), where \(d \) is the Kullback–Leibler divergence [21, 22, 17].

Reconstruction methods in medical imaging suffer from blurring effects if the phantom moves during acquisition time, unless movement taken into account in the reconstruction process. Cardiac or thoracic PET scans are typical instances of this problem.

Motion estimation refers to methods which take movement into account by estimating it. This can be done either prior to reconstruction, or jointly with it, see [5, 6, 18, 19] for a review. A first class of methods is based on a discrete description of movement, such as [10, 11]. However, models with a continuous description of movement, typically by means of diffeomorphisms, are gaining popularity in the context of PET [3, 4], and more broadly in imaging sciences [23].

Date: 2020-04-07.
Figure 1. Template evolution through translation operators.

Considering X as a functional space of functions defined over a compact $K \subset \mathbb{R}^p$, these approaches assume that the activity is modified by operators $W_t : X \rightarrow X$.

If we assume that W_t is defined through a diffeomorphism for any $t \in [0, 1]$, for instance, as diffeomorphisms do not preserve grids, the latter approach does not easily lend itself to discretisation (in which case X becomes a finite-dimensional space).

The aim of the present paper is twofold.

- First, extending [17], we introduce a continuous mathematical framework which incorporates any movement model.
- Second, based on this construction, we propose and analyse an ML-EM type algorithm for the maximum likelihood problem associated to a known continuous movement model.

When the movement is in fact static, we recover the classical ML-EM algorithm as a particular case. Even in the static case, optimal solutions to the maximum likelihood problem can be singular measures (sums of point masses), and it is the standard outcome in the noisy case [14, 17]. We thus use measures to model images in this continuous context.

We also emphasise that in the case of gated data, i.e., when a physical device allows to group counts per phase in which the movement can be assumed to be stationary, an ML-EM algorithm has been derived informally in the literature [9, 13, 15]. We recover that algorithm as well when the W_t are assumed to be piecewise constant in time.

The proposed approach applies to cases where the movement model is known. This can be for scans of phantoms where movement is controlled, or when the motion model is estimated prior to reconstruction. An example is provided in Figure 1 and Figure 2; see §4.2 for more details.

Our approach can also serve as a building block for joint motion estimation and reconstruction, when the movement model is unknown. A typical strategy to solve the resulting optimisation problem is to intertwine estimating the image and the transformation (typically a diffeomorphism) [9, 13, 15]. Thus, given a current
Proposed ML-EM algorithm

Classical ML-EM on static data

Classical ML-EM on full aggregated data

Classical ML-EM on partial aggregated data on $[\frac{3}{4}, 1]$, scaled

Figure 2. Tenth iterate of the proposed algorithm (3.1) compared to the classical ML-EM algorithm in various cases.

estimate of the transformations W_t, the next iterate for the image is obtained by maximising the corresponding likelihood, which is exactly what our algorithm does.

Outline of the paper. The paper is organised as follows. In §2, we introduce the notations as well as the modelling through time-space Poisson point processes. We derive the likelihood associated to the times of detections for this statistical model. Finally, we provide the corresponding optimality conditions. The ML-EM algorithm is introduced in §3, where we prove its monotonicity and analyse its convergence properties. In §4, numerical simulations are presented, showing that our algorithm performs like the classical ML-EM, and avoids blurring effects when compared to neglecting motion.

2. Maximum likelihood function

2.1. Notations. For a given compact $E \subset \mathbb{R}^d$, we denote $\mathcal{M}(E)$ the set of Radon measures defined on E, i.e., the topological dual of continuous functions $C(E)$ over E. Endowing $\mathcal{M}(E)$ with its weak-* topology, its dual is given by $C(E)$. We denote by $\langle \mu, f \rangle$ the pairing of a measure $\mu \in \mathcal{M}(E)$ and a function $f \in C(E)$.

The set of nonnegative measures will be denoted $\mathcal{M}_+(E)$. By the Riesz–Markov representation theorem, we may also regard a measure $\mu \in \mathcal{M}_+(E)$ as a Borel measure, and we will sometimes write $\mu(B)$ for the measure of a measurable set $B \subset E$.

For μ, ν two measures in $\mathcal{M}(E)$, the notation $\mu \ll \nu$ means that μ is absolutely continuous with respect to ν.
An operator $W: \mathcal{M}(E) \to \mathcal{M}(E)$ i.e., a linear and continuous mapping in the weak-$*$ topology, is defined through its adjoint $W^*: \mathcal{C}(E) \to \mathcal{C}(E)$ by

$$\langle W\mu, f \rangle := \langle \mu, W^*f \rangle$$

for any $f \in \mathcal{C}(E)$.

Note that the adjoint of an operator of $\mathcal{M}(E)$ is well-defined as a mapping from $\mathcal{C}(E)$ onto itself, meaning that such an operator indeed may be defined through its adjoint, see [4, Proposition 3.14].

2.2. Modelling. We quickly recall the physics underlying Positron Emission Tomography. A radiotracer injected into the patient diffuses into tissues and then disintegrates by emitting positrons. A given positron, after a very short travel distance, interacts with an electron, yielding two photons emitted in (uniformly) random opposite directions. Such photons are then detected simultaneously by a pair of detectors.

We are given a compact $K \subset \mathbb{R}^p$ (having $p = 2$, $p = 3$ in mind for the application) on which the image is defined. We assume that the emission process is defined by a time-space Poisson point process. The intensity of the latter is a measure in $\mathcal{M}_+(\mathbb{R}_{+} \times K)$, where, without loss of generality, we fix the final time to one.

We assume that the intensity at time t is given by a known linear transformation of the unknown measure $\mu \in \mathcal{M}_+(K)$. In other words, the activity at time t is the measure $W_t\mu$, where the linear operators

$$W_t: \mathcal{M}(K) \to \mathcal{M}(K), \quad t \in [0, 1],$$

are known.

Hence, we define the measure underlying the time-space Poisson process by

$$[t_1, t_2] \times B \mapsto \int_{t_1}^{t_2} (W_t\mu)(B) \, dt, \quad 0 \leq t_1 < t_2 \leq 1, \ B \subset K \text{ Borel set},$$

which we denote $W_t\mu$ with a slight abuse of notation. This measure is well-defined under the assumption (2.3), see the full set of assumptions in the next subsection.

Independently of the emission process associated, a point emitted at $x \in K$ and time $t \in [0, 1]$ then has a relative probability $a_i(x)$ to be detected in detector i, and we thus assume

$$(1) \quad a_i \in \mathcal{C}(K), \quad a_i \geq 0, \quad i = 1, \ldots, m.$$

We assume that the detection also occurs at time t, which is an excellent approximation.

We now define the PET operator $A: \mathcal{M}(K) \to \mathbb{R}^m$ by

$$(A\mu)_i := \langle \mu, a_i \rangle = \int_K a_i \, d\mu, \quad i = 1, \ldots, m.$$

Note that the adjoint $A^*: \mathbb{R}^m \to \mathcal{C}(K)$ of A is given by

$$A^*\lambda = \sum_{i=1}^m \lambda_i a_i, \quad \lambda \in \mathbb{R}^m.$$

2.3. Assumptions on the Transformations. We make the following assumptions on the transformations W_t, for $t \in [0, 1]$.

Nonnegativity Preservation:

$$(2) \quad \mu \geq 0 \implies W_t\mu \geq 0, \quad t \in [0, 1]$$

Integrability: denoting 1 for the constant function in $\mathcal{C}(K)$, we assume

$$(3) \quad \int_{[0,1] \times K} W_t^* 1 < +\infty.$$
Defining $\mathbf{1} = (1, \ldots, 1) \in \mathbb{R}^m$, the condition (2.3) allows us to define the following integral:

\[
f := \int_0^1 W^*_i A^* \mathbf{1} \, dt
\]

A consequence of (2.3) and (2.2) is that $f \geq 0$. We make the further blanket assumption that $f \neq 0$, that is (since K is compact)

\[
2c > 0, \quad f(x) \geq c \quad x \in K.
\]

The assumption (2.3) equivalently writes $g \geq 0 \implies W^*_i g \geq 0$ for any $t \in [0, 1]$, $g \in C(K)$, $g \geq 0$. It means that a transformation W_i cannot create illegal (negative) activity. The assumption (2.3) essentially ensures that there is a finite activity over time. The blanket assumption (2.3) is natural: if $f = 0$, then $W^*_i a_i = 0$ for all detectors i and times t, which means that nothing is ever measured. We simply exclude this trivial case.

2.4. Maximum likelihood. We assume that there are n_i detections in a given detector $i \in \{1, \ldots, m\}$, detected at times t^i_j, $j = 1, \ldots, n_i$. We do not require that the times be ordered. We also denote

\[
n := \sum_{i=1}^m n_i,
\]

the total number of detections.

Our aim is to derive the likelihood for the problem of estimating μ from the data given by the number of points and times of detections, namely

\[
n_i, \quad t^i_j, \quad j = 1, \ldots, n_i, \quad i = 1, \ldots, m,
\]

We introduce a couple of additional notations. First, we define for a time $t \in [0, 1]$ and the measure $\mu \in M_+(K)$ the function

\[
\beta_i(t) := (AW_i \mu)_i, \quad i = 1, \ldots, m,
\]

or equivalently, $\beta_i(t) = (W_i \mu, a_i)$. We also define a collection Γ of n continuous functions by

\[
\Gamma := \{W^*_i a_i \mid i = 1, \ldots, m, \quad j = 1, \ldots, n_i\}.
\]

We first identify the point process from which the data is drawn.

Proposition 2.1. For $i \in \{1, \ldots, m\}$, the number of points n_i and times t^i_j are drawn from independent inhomogeneous (in time) Poisson processes on $[0, 1]$, with respective intensities given by the functions β_i.

Proof. Since the emission process is independent from that of the detection process, we use the thinning property ([12, Theorem 5.8]) to assert that for each $i \in \{1, \ldots, m\}$ the point process defined by the points detected by detector i is also a time-space Poisson process, with underlying measure

\[
a_i W_i \mu \in M_+([0, 1] \times K),
\]

i.e., the measure

\[
[t_1, t_2] \times B \mapsto \int_{t_1}^{t_2} (a_i W_i \mu)(B) \, dt, \quad 0 \leq t_1 < t_2 \leq 1, \quad B \subset K \text{ Borel set}.
\]

Furthermore and still by the thinning property, all these processes are independent.

For a given $i \in \{1, \ldots, m\}$, the number of points n_i and the times of detections t^i_j are that of a (time) Poisson process defined on $[0, 1]$, since it corresponds to marginalising with respect to $x \in K$ the associated time-space Poisson process.
resulting object is thus an inhomogeneous (in time) Poisson process, with intensity obtained by integrating the measure \(a_i W_t \mu \) in space:

\[
\forall t \in [0,1], \quad \int_K d(a_i W_t \mu) = \langle W_t \mu, a_i \rangle = \beta_i(t).
\]

We are now in a position to derive the maximum likelihood function, namely:

Corollary 2.2. The maximum likelihood problem is given by

\[
\min_{\mu \in \mathcal{M}_+(K)} \ell(\mu),
\]

where

\[
\ell(\mu) := \langle \mu, f \rangle - \sum_{\gamma \in \Gamma} \log(\langle \mu, \gamma \rangle),
\]

with the convention that \(\ell(\mu) = +\infty \) for \(\mu \) not in

\[
\text{dom}(\ell) := \{ \mu \in \mathcal{M}_+(K) \mid \langle \mu, \gamma \rangle > 0, \; \gamma \in \Gamma \}.
\]

Proof. The negative log-likelihood for the number of points \(n \) and times \(t_j \) for an inhomogeneous Poisson point process of intensity \(\beta \in L^1(0,1) \) is known to be given up to constants by

\[
\int_0^1 \beta(t) \, dt - \sum_{j=1}^n \log(\beta(t_j)).
\]

The integrability condition \((2.3)\) together with the preservation of nonnegativity \((2.3)\) implies that \(t \mapsto \int W^*_t a_i \in L^1(0,1; C(K)) \), and in particular the intensity functions \(\beta_i \) defined in the above proof all lie in \(L^1(0,1) \).

By independence, summing the above negative log-likelihood over \(i \in \{1, \ldots, m\} \) we find the full negative log-likelihood

\[
\ell(\mu) = \sum_{i=1}^m \int_0^1 \beta_i(t) \, dt - \sum_{i=1}^m \sum_{j=1}^{n_i} \log(\beta_i(t_j)),
\]

\[
= \langle \mu, f \rangle - \sum_{\gamma \in \Gamma} \log(\langle \mu, \gamma \rangle).
\]

The last line just uses the fact that \(\beta_i(t_j) = \langle \mu, W^*_t a_i \rangle \) whereas the exchange of order of integration in the first term can be performed by Fubini’s theorem, owing to \((2.3)\).

Remark 2.3. In the stationary case, i.e., \(W_t = \text{Id} \) over \([0,1]\), we have \(f = A^* 1 \) and for \(\gamma \in \Gamma \) defined by \(i \in \{1, \ldots, m\} \), \(j \in \{1, \ldots, n_i\} \), \(\gamma = W^*_i a_i = a_i \). Hence

\[
\sum_{\gamma \in \Gamma} \log(\langle \mu, \gamma \rangle) = \sum_{i=1}^m \sum_{j=1}^{n_i} \log(\langle \mu, a_i \rangle) = \sum_{i=1}^m n_i \log(\langle A \mu \rangle_i),
\]

so that the loss function writes

\[
\ell(\mu) = \langle \mu, A^* 1 \rangle - \sum_{i=1}^m n_i \log(\langle A \mu \rangle_i).
\]

Up to constants, this is nothing but the usual negative log-likelihood \(d(y\| A \mu) \) with \(y = (n_1, \ldots, n_m) \) used in the static case \cite{17}, and \(d \) the Kullback-Leibler divergence defined for nonnegative vectors \(u, v \in \mathbb{R}^m \) by

\[
d(u\| v) = \sum_{i=1}^m u_i \log \left(\frac{u_i}{v_i} \right) - u_i + v_i.
\]
with value $+\infty$ if there exists $i \in \{1, \ldots, m\}$ such that $u_i > 0$, $v_i = 0$.

2.5. **Optimality conditions.** We derive below the optimality conditions for the maximum likelihood problem.

To derive optimality conditions, we endow $\mathcal{M}(K)$ with its strong topology. The function ℓ takes finite values and is differentiable on its domain $\text{dom}(\ell)$, which is open. For $\mu \in \text{dom}(\ell)$, we readily compute

$$\nabla \ell(\mu) = f - \sum_{\gamma \in \Gamma} \frac{\gamma}{\langle \mu, \gamma \rangle},$$

(6)

an element of the dual of $\mathcal{M}_+(K)$ which we may identify with an element of $C(K)$.

Proposition 2.4. A measure $\mu^* \in \text{dom}(\ell)$ is optimal if and only if

$$\nabla \ell(\mu^*) \geq 0 \text{ on } K,$$

$$\nabla \ell(\mu^*) = 0 \text{ on } \text{supp}(\mu^*).$$

Proof. Since the function ℓ is convex, a measure $\mu^* \in \text{dom}(\ell)$ is optimal if and only if

$$\nabla \ell(\mu^*) \in -N_{\mathcal{M}_+(K)}(\mu^*).$$

where

$$N_{\mathcal{M}_+(K)}(\mu) := \{ g \in C(K) \mid \forall \nu \in \mathcal{M}_+(K), \langle \nu - \mu, g \rangle \leq 0 \}$$

is the normal cone to $\mathcal{M}_+(K)$ at μ. From [17, Lemma 3.5], the normal cone can be characterised by

$$N_{\mathcal{M}_+(K)}(\mu) = \{ g \in C(K) \mid g \leq 0 \text{ on } K, \ g = 0 \text{ on } \text{supp}(\mu) \},$$

and the claim follows. \square

Note that this optimality criterion shows that if there exists a measure μ such that

$$\sum_{\gamma \in \Gamma} \frac{\gamma}{\langle \mu, \gamma \rangle} = f,$$

then μ is optimal.

Corollary 2.5. The infimum of ℓ is a minimum.

Proof. If an optimum exists, since $\nabla \ell(\mu^*) = 0$ vanishes on the support of μ^*, we obtain $\langle \mu^*, \nabla \ell(\mu^*) \rangle = 0$. A computation using (2.5) shows on the other hand that

$$\langle \mu^*, \nabla \ell(\mu^*) \rangle = \langle \mu^*, f \rangle - \#\Gamma = \langle \mu^*, f \rangle - n.$$

As a result, it suffices to minimise ℓ on the set $\{ \mu \in \mathcal{M}_+(K) \mid \langle \mu, f \rangle = n \}$. Any measure μ in the previous set satisfies $\mu(K) \leq 1/e$ thanks to the lower bound on the function f. Thus, the set is bounded and hence weak-*\ast compact by the Banach–Alaoglu theorem [20]. Since ℓ is clearly weak-*\ast continuous, the claim follows. \square

3. **ML-EM algorithm**

In this section, we define the ML-EM algorithm, and prove that it is monotone and convergent in the low noise regime. Since all measures and continuous functions will from now on all be defined on the compact K in this section, we drop the reference to K in the functional spaces, denoting them \mathcal{M}, \mathcal{M}_+ and C respectively.
3.1. **Definition and well-posedness.** For \(\mu_0 \in \text{dom}(\ell) \), we define the iterates

\[
\mu_{k+1} = \mu_k + \sum_{\gamma \in \Gamma} \gamma \langle \mu_k, \gamma \rangle.
\]

We first observe that the algorithm is well-defined. This is because

\[\mu_k \in \text{dom}(\ell) \implies \mu_{k+1} \in \text{dom}(\ell). \]

Indeed, using the lower bound \((2.3)\) on \(f \), we find for any \(\gamma \in \Gamma \):

\[
\langle \mu_{k+1}, \gamma \rangle \geq \frac{1}{c} \langle \mu_k, \gamma \rangle \langle \mu_k, \gamma^2 \rangle > 0,
\]

since the Cauchy–Schwarz inequality \(\langle \mu_k, \gamma^2 \rangle \mu_k(K) \geq \langle \mu_k, \gamma \rangle^2 \) prevents \(\langle \mu_k, \gamma^2 \rangle \) from vanishing. More precisely, after defining the compact \(\tilde{K} := \bigcup_{\gamma \in \Gamma} \text{supp}(\gamma) \), we find that \(\text{supp}(\mu_k) = \tilde{K} \) for all \(k \geq 1 \), provided that \(\text{supp}(\mu_0) = K \) and \(\mu_0 \in \text{dom}(\ell) \). Note that the optimality conditions \((2.4)\) prove that any optimal measure \(\mu^* \) satisfies \(\text{supp}(\mu^*) \subset \tilde{K} \).

Finally, we remark that

\[
\forall k \geq 1, \quad (\mu_k, f) = n.
\]

Remark 3.1. Assume that for some times \(t_0 < t_1, \ldots < t_N \) we have

\[
\forall t \in (t_{s-1}, t_s), \quad W_t = W_{t_s}, \quad s = 1, \ldots, N,
\]

i.e., the movement is piecewise constant on \((t_{s-1}, t_s)\) for \(s \in \{1, \ldots, N\} \). We may then also group points by phase and detector by denoting \(n_s^i \) the number of points detected in detector \(i \) between \(t_{s-1} \) and \(t_s \), and \(n^s = (n_s^1, \ldots, n_s^m) \). Using the notations \(A_s := A W_{t_s} \), \(\Delta t_s = t_s - t_{s-1} \), the algorithm then rewrites

\[
\mu_{k+1} = \frac{\mu_k}{\sum_{s=1}^N \Delta t_s A_s^*} \sum_{s=1}^N A_s^* \left(n^s \frac{1}{A_s \mu_k} \right).
\]

In other words, we recover the algorithm for **gated** data, proposed in [9] for the intensity-preserving action, and generalised in [13, 15]. The ensuing analysis is up to our knowledge the first rigorous justification for these informally-derived algorithms, under the assumption of piecewise-constant movement.

Note also that \((3.1)\) can be rewritten as

\[
\mu_{k+1} = \frac{\mu_k}{\sum_{s=1}^N \Delta_t A_s^*} \sum_{s=1}^N \tilde{A}_s^* \left(n^s \frac{1}{\tilde{A}_s \mu_k} \right).
\]

where \(\tilde{A}_s := (\Delta t_s) A_s \). In this case, this is simply the standard ML-EM algorithm with the new operator \(\tilde{A} : \mathcal{M} \to \mathbb{R}^{mN} \) defined by \(\tilde{A} := [\tilde{A}_1, \ldots, \tilde{A}_N] \).

In particular, we also recover the classical ML-EM algorithm, since if \(W_t = \text{Id} \) for all \(t \in [0, 1] \), the above simplifies to

\[
\mu_{k+1} = \frac{\mu_k}{\tilde{A}^*} A^* \left(\frac{y}{\tilde{A} \mu_k} \right),
\]

with \(y = (n_1, \ldots, n_m) \).
3.2. Monotonicity. For a nonnegative function $\gamma \in C$ and a nonnegative measure $\mu \in \mathcal{M}_+$, we define the measure

$$
\nu_\gamma(\mu) := \frac{\gamma\mu}{\langle \mu, \gamma \rangle}.
$$

Note that ν_γ is a probability measure over K, and that, following (3.1),

$$
\mu_{k+1} = \frac{1}{f} \sum_{\gamma \in \Gamma} \nu_\gamma(\mu_k).
$$

Define the set $X_k := \{ \mu \in \mathcal{M}_+ \mid \mu_{k+1} \ll \mu \ll \mu_k, \langle \mu, f \rangle = 1 \}$ for $k \in \mathbb{N}$. We now define the surrogate function $Q_k : X_k \to \mathbb{R}$ by

$$
Q_k(\mu) := \ell(\mu) + \sum_{\gamma \in \Gamma} D(\nu_\gamma(\mu_k)||\nu_\gamma(\mu)),
$$

where D is the Kullback-Leibler divergence defined for any two probability measures $\mu \ll \nu$ over K by

$$
D(\mu||\nu) := \int_K \log \left(\frac{d\mu}{d\nu} \right) d\mu,
$$

with $\frac{d\mu}{d\nu}$ standing for the Radon–Nikodym derivative of μ with respect to ν.

Lemma 3.2. The following holds for all $k \geq 1$:

(i) $Q_k(\mu) \geq \ell(\mu)$, $\mu \in X_k$

(ii) $Q_k(\mu_k) = \ell(\mu_k)$

(iii) $Q_k(\mu) - Q_k(\mu_{k+1}) = \langle \mu - \mu_{k+1}, f \rangle + D(f\mu_{k+1}\|f\mu)$, $\mu \in X_k$

(iv) $Q_k(\mu_k) - Q_k(\mu_{k+1}) = D(f\mu_{k+1}\|f\mu_k)$

Proof. The properties of divergences allow us to conclude about (i) and (ii). One computes

$$
Q_k(\mu) = \langle \mu, f \rangle - \sum_{\gamma \in \Gamma} \langle \nu_\gamma(\mu_k), \log \left(\frac{\nu_\gamma(\mu_k)}{\nu_\gamma(\mu_k)} \right) \rangle.
$$

This gives

$$
Q_k(\mu) - Q_k(\mu_{k+1}) =
\langle \mu - \mu_{k+1}, f \rangle + \sum_{\gamma \in \Gamma} \langle \nu_\gamma(\mu_k), \log \left(\frac{d\mu_{k+1}}{d\mu_k} \right) \rangle - \log \left(\frac{\mu_{k+1}}{\mu_k} \right),
$$

$$
= \langle \mu - \mu_{k+1}, f \rangle + \sum_{\gamma \in \Gamma} \nu_\gamma(\mu_k), \log \left(\frac{d\mu_{k+1}}{d\mu_k} \right),
$$

$$
= \langle \mu - \mu_{k+1}, f \rangle + D(f\mu_{k+1}\|f\mu_k),
$$

which proves (iii). Finally, (iv) is a consequence of (iii) and (3.1). □

These computations yield the monotony of the function ℓ along iterates.

Corollary 3.3. For any $\mu_0 \in \text{dom}(\ell)$, we have

$$
0 \leq Q_k(\mu_k) - Q_k(\mu_{k+1}) \leq \ell(\mu_k) - \ell(\mu_{k+1}) \quad k \in \mathbb{N}.
$$

Proof. It is a consequence of Lemma 3.2. First, using Lemma 3.2 (iv), we get $Q_k(\mu_k) - Q_k(\mu_{k+1}) \geq 0$. Now, conclude noticing that Lemma 3.2 (i) and Lemma 3.2 (iii) imply $Q_k(\mu_k) - Q_k(\mu_{k+1}) = \ell(\mu_k) - \ell(\mu_{k+1}) \leq \ell(\mu_k) - \ell(\mu_{k+1})$. □
3.3. Convergence. In this section, we highlight the main ideas of proofs, which largely follow [17].

Proposition 3.4. For any $\mu_0 \in \text{dom}(\ell)$, the weak-$\ast$ cluster points $\bar{\mu}$ of $\{\mu_k\}_{k \in \mathbb{N}}$ exist and are fixed points of the algorithm, namely

$$\bar{\mu} = \bar{\mu} = \frac{\bar{\mu}}{\ell} \sum_{\gamma \in \Gamma} \frac{\gamma}{(\bar{\mu}, \gamma)}.$$ \[\text{Proof.}\] We first prove that the sequence is weak-\ast compact in M_+. Integrating the defining relation of ML-EM (3.1) and using the assumption (2.3) that $f \geq c > 0$, we indeed find

$$\mu_{k+1}(K) = \int_K d\mu_{k+1} \leq \frac{1}{c} \sum_{\gamma \in \Gamma} (\mu_k, \gamma) = \frac{n}{c}.$$ From the Banach–Alaoglu theorem [20], we extract a weak-\ast converging subsequence to a given $\bar{\mu}$, and we denote the subsequence $\{\mu_{\varphi(k)}\}_{k \in \mathbb{N}}$.

We also note that ℓ is weak-\ast continuous. In particular, we have $\bar{\mu} \in \text{dom}(\ell)$ since otherwise $\{\ell(\mu_{\varphi(k)})\}_{k \in \mathbb{N}}$ would diverge to $+\infty$, in contradiction with its monotonicity.

Using Corollary 3.3 and Lemma 3.2 (iv), we can then follow the lines of [17, Proposition 4.3] to conclude the proof. \square

We refer to absolutely continuous measures for those that are absolutely continuous with respect to the Lebesgue measure on K, and proceed with a further assumption on the regularity of minimisers:

(11) there exists $\mu^* \in \arg\min_{\mu \in M_+} \ell(\mu)$ absolutely continuous with $\text{supp}(\mu^*) = \tilde{K}$.

Remark 3.5. Using the results in [7], one typically expects the existence of such absolutely continuous measures in the low noise regime [17]. More precisely, in the static case and if $y = (n_1, \ldots, n_m)$ is in the interior of the cone $\{A\mu \mid \mu \in M_+\}$ in \mathbb{R}^m, such measures do exist [17].

Theorem 3.6. Assume that assumption (3.3) holds. Then, for any $\mu_0 \in \text{dom}(\ell)$ absolutely continuous with a continuous and positive density over K, the algorithm is convergent in the sense that

$$\ell(\mu_k) \xrightarrow[k \to +\infty]{\mu \in M_+} \min \ell(\mu).$$ Furthermore, any weak-\ast limit point $\bar{\mu}$ of the algorithm satisfies $\text{supp}(\bar{\mu}) = \tilde{K}$.

Proof. We argue in several steps, letting $\bar{\mu}$ be a cluster point of the ML-EM iterates $\{\mu_k\}_{k \in \mathbb{N}}$.

(1) The assumptions on μ_0 ensure that μ_1 is absolutely continuous, with $\text{supp}(\mu_1) = \tilde{K}$, whence $D(f\mu^*||f\mu_1) < +\infty$, where μ^* is defined by (3.3). We can then prove similarly to [17, Proposition 4.7] that for all $k \geq 1$,

$$D(f\mu^*||f\mu_{k+1}) \leq D(f\mu^*||f\mu_k).$$ Taking a subsequence along which $\{\mu_k\}_{k \in \mathbb{N}}$ converges weakly-\ast to $\bar{\mu}$ and using the weak-\ast lower semicontinuity of the Kullback–Leibler divergence [16], we find

$$D(f\mu^*||f\bar{\mu}) < \infty.$$ This shows that $f\mu^* \ll f\bar{\mu}$, whence $\text{supp}(\bar{\mu}) = \tilde{K}$ thanks to the positivity of f.

(2) We now make use of the fact that $\bar{\mu}$ must also be a fixed point of the algorithm, by virtue of Proposition 3.4. In other words, we have
\[
\bar{\mu} = \mathcal{F} \sum_{\gamma \in \Gamma} \gamma \langle \bar{\mu}, \gamma \rangle \iff \bar{\mu} \nabla \ell(\bar{\mu}) = 0.
\]
This implies $\nabla \ell(\bar{\mu}) = 0$ on supp$(\bar{\mu})$. Outside of supp$(\bar{\mu}) = \tilde{K}$,
\[
\nabla \ell(\bar{\mu}) = f - \sum_{\gamma \in \Gamma} \gamma \langle \bar{\mu}, \gamma \rangle \geq 0,
\]
since the right-hand side vanishes by definition of \tilde{K}, whereas f is positive. Hence, $\bar{\mu}$ satisfies both optimality conditions (2.4), which shows that $\bar{\mu}$ is optimal and hence the claim that any cluster point is optimal.

(3) For the convergence of $\{ \ell(\mu_k) \}_{k \in \mathbb{N}}$ towards the minimum, we just recall that the sequence is non-increasing from Corollary 3.3, hence its limit must coincide with $\ell(\bar{\mu})$ for any cluster point $\bar{\mu}$. The optimality of such cluster points concludes the proof.

□

The interest of emphasising the property supp$(\bar{\mu}) = \tilde{K}$ for cluster points is that this prevents them from being sparse measures.

4. Numerical simulations

All simulations are run in Python and use the Operator Discretization Library (odl) for manipulating operators [2], neuron for warping utilities [5], which itself uses tensorflow [1].

4.1. General approach. We work with the Derenzo phantom, displayed in the Introduction, see Figure 1.

The noise level is controlled by the dose (or time) by which we multiply the phantom. In all experiments we have run, we have multiplied the Derenzo phantom by ten. We denote it μ_r.

Given a time-evolution of the template through operators W_t, we first generate the number of points and times per detector, using the result established in Proposition 2.1. The latter states that they are for each $i \in \{1, \ldots, m\}$ independently drawn according to an inhomogeneous Poisson point process over $[0,1]$, with intensity defined by
\[
t \in [0,1] \mapsto \beta_i(t) = \int_K a_i d(W_t \mu_r) = \int_K (W^*_t a_i) d\mu_r.
\]
These processes are simulated using the rejection method, i.e., by finding a bound M_i such that $\beta_i \leq M_i$ on $[0,1]$, simulating a homogeneous Poisson process of intensity M_i on $[0,1]$, and then accepting a drawn time t^{ij}_i with probability $\beta_i(t^{ij}_i)/M_i$.

In each of the test cases presented below, we also compute the total number of points detected by detector n_i, $i \in \{1, \ldots, m\}$, thus obtaining a sinogram, which we call aggregated data. Data can be aggregated on the whole interval of time $[0,1]$ or on a small portion of it to curb the effect of movement. This is what is commonly done in modern scanners to alleviate blur coming from movement of organs, such as the lungs.

Finally, we will also compute a fictitious sinogram data, as obtained from the static phantom acquired for the same amount of time.

All in all, this gives us three benchmarks again which we may test our results for a given fixed number of iterates k_0:

- k_0 iterates of the classical ML-EM algorithm on data acquired from the static phantom.
• k_0 iterates of the classical ML-EM algorithm on the aggregated data on the whole interval $[0, 1]$.
• k_0 iterates of the classical ML-EM algorithm on the aggregated data on a relevant subinterval of $[0, 1]$.

We expect our algorithm to perform as well as the classical ML-EM algorithm on a static phantom, thus avoiding both the blur observed when aggregating data on the whole time-interval because of movement, and the higher noise observed when only a portion of the aggregated data is kept.

4.2. Translation. We work with a 2D PET operator A with 90 angles (views) and 64 tangential positions, and the image space is a square with resolution 256×256.

The image μ_t is given as the evolution of μ_r through operators W_t defined by means of translations. We choose a mapping $c : [0, 1] \mapsto \mathbb{R}$ for a speed of translation, the operators are correspondingly defined through their adjoint for functions f by

$$x \mapsto W_t^r f(x) = f(x + c(t)).$$

In the experiment the image is translated from left to right at speed t, up until it is at the center of the image, at $t = \frac{1}{4}$. The translation then stops. In other words,

$$c(t) = (c_1(t), 0), \quad c_1(t) = (at + b)\mathbb{1}_{[0, \frac{1}{2}]}(t), \quad t \in [0, 1]$$

for appropriately chosen constants a and b. The resulting evolving image is depicted in Figure 1.

Figure 2 shows the result of 10 iterates of our algorithm on the times t^j_i compared to 10 iterates of the classical ML-EM algorithm as obtained either on a fictitious static case, or on partially or fully aggregated data. The partially aggregated data is taken from the time-interval $[\frac{1}{3}, 1]$, namely when the translation has stopped.

As expected, the result is almost indistinguishable from the static case, whereas the classical ML-EM algorithm on the full aggregated data leads to a poor image due to the movement. The same applied to partially aggregated data performs well since the image is static on the last portion of the time-window, but $3/4$th of the data is unused, resulting in a noisier image. The small circles towards the center are indeed less easily distinguished in the case of data as they can be in cases (a) and (b).

We observe a lower maximum for image (c) than for images (a) and (b). This is to be expected, as classical ML-EM iterates are such that $(\mu_k, A^*1) = n$, whereas it is $(\mu_k, f) = n$ (see (5.1)) for our algorithm. Since the function f is less than A^*1 in this translating situation, this explains why maxima must differ.

Finally, we stress that we have scaled the last image (d) by a multiplication of 4 to make the comparison with (a) and (b) easier, since there is only 1/4th of the data.

4.3. Mass-preserving action of diffeomorphisms. The forward operator is now a 2D PET operator A with 45 angles (views) and 64 tangential positions, and the image space is a square with resolution 128×128.

The image μ_t is given as the evolution of μ_r through operators W_t defined by means of diffeomorphisms φ_r and the mass-preserving action, i.e., for all $f \in C$,

$$W_t^r f(x) = f(\varphi_r(x)), \quad x \in K.$$

Now, if μ is absolutely continuous with density g with respect to the Lebesgue measure, we find

$$\langle W\mu, f \rangle = \int_E f(\varphi(x))g(x) \, dx = \int_E f(x)|D\varphi^{-1}(x)||g(\varphi^{-1}(x))| \, dx,$$

which shows that $W\mu$ is absolutely continuous with density $x \mapsto |D\varphi^{-1}(x)||g(\varphi^{-1}(x))$ with respect to the Lebesgue measure.
The diffeomorphisms are obtained by integration of a stationary vector field, as $\varphi_t = \exp(tv)$. In other words, they are obtained by integrating the following Cauchy problem over $[0, 1]$:

$$
\begin{cases}
\partial_t \varphi_t(x) = v(\varphi_t(x)), \\
\varphi_0 = \text{Id}.
\end{cases}
$$

The resulting evolving image is depicted in Figure 3.

Figure 3. Template evolution through mass-preserving operators.

Figure 4 presents the results after ten iterations of the proposed algorithm. Again, the results of the classical ML-EM algorithm on the static phantom after the same number of iterations look very similar.

However, the reconstruction obtained on the full aggregated data is unsurprisingly blurred, as all the positions are “averaged” in the reconstruction. The last reconstruction obtained from aggregating data on $[0, \frac{1}{4}]$ exhibit less blur but more noise.

REFERENCES

(a) Proposed ML-EM algorithm

(b) Classical ML-EM on static data

(c) Classical ML-EM on full aggregated data

(d) Classical ML-EM on partial aggregated data on $[0, \frac{1}{4}]$, scaled

Figure 4. 10th iterate of our algorithm compared to the classical ML-EM algorithm in various cases.

MAP5 Laboratory, FP2M, CNRS FR 2036, Université de Paris, 75006 Paris, France.
E-mail address: camille.pouchol@parisdescartes.fr

Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
E-mail address: olivierv@kth.se

Department of Computing, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway.
E-mail address: olivier.verbier@hvl.no